Displaying 41 – 60 of 219

Showing per page

A linear programming approach to error bounds for random walks in the quarter-plane

Jasper Goseling, Richard J. Boucherie, Jan-Kees van Ommeren (2016)

Kybernetika

We consider the steady-state behavior of random walks in the quarter-plane, in particular, the expected value of performance measures that are component-wise linear over the state space. Since the stationary distribution of a random walk is in general not readily available we establish upper and lower bounds on performance in terms of another random walk with perturbed transition probabilities, for which the stationary distribution is a geometric product-form. The Markov reward approach as developed...

A lower bound for the principal eigenvalue of the Stokes operator in a random domain

V. V. Yurinsky (2008)

Annales de l'I.H.P. Probabilités et statistiques

This article is dedicated to localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector fields that vanish outside a large random domain modeling the pore space in a cubic block of porous material with disordered micro-structure. Its main result is an asymptotically deterministic lower bound for the PE of the sum of a low compressibility approximation to the Stokes operator and a small scaled random potential term, which is applied to produce a similar bound...

A method constructing density functions: the case of a generalized Rayleigh variable

Viorel Gh. Vodă (2009)

Applications of Mathematics

In this paper we propose a new generalized Rayleigh distribution different from that introduced in Apl. Mat. 47 (1976), pp. 395–412. The construction makes use of the so-called “conservability approach” (see Kybernetika 25 (1989), pp. 209–215) namely, if X is a positive continuous random variable with a finite mean-value E ( X ) , then a new density is set to be f 1 ( x ) = x f ( x ) / E ( X ) , where f ( x ) is the probability density function of X . The new generalized Rayleigh variable is obtained using a generalized form of the exponential...

A nonasymptotic theorem for unnormalized Feynman–Kac particle models

F. Cérou, P. Del Moral, A. Guyader (2011)

Annales de l'I.H.P. Probabilités et statistiques

We present a nonasymptotic theorem for interacting particle approximations of unnormalized Feynman–Kac models. We provide an original stochastic analysis-based on Feynman–Kac semigroup techniques combined with recently developed coalescent tree-based functional representations of particle block distributions. We present some regularity conditions under which the -relative error of these weighted particle measures grows linearly with respect to the time horizon yielding what seems to be the first...

Currently displaying 41 – 60 of 219