Page 1

Displaying 1 – 11 of 11

Showing per page

Gamma minimax nonparametric estimation

Maciej Wilczyński (2003)

Applicationes Mathematicae

Let Y be a random vector taking its values in a measurable space and let z be a vector-valued function defined on that space. We consider gamma minimax estimation of the unknown expected value p of the random vector z(Y). We assume a weighted squared error loss function.

Gaussian model selection

Lucien Birgé, Pascal Massart (2001)

Journal of the European Mathematical Society

Our purpose in this paper is to provide a general approach to model selection via penalization for Gaussian regression and to develop our point of view about this subject. The advantage and importance of model selection come from the fact that it provides a suitable approach to many different types of problems, starting from model selection per se (among a family of parametric models, which one is more suitable for the data at hand), which includes for instance variable selection in regression models,...

Generalized information criteria for Bayes decisions

Domingo Morales, Igor Vajda (2012)

Kybernetika

This paper deals with Bayesian models given by statistical experiments and standard loss functions. Bayes probability of error and Bayes risk are estimated by means of classical and generalized information criteria applicable to the experiment. The accuracy of the estimation is studied. Among the information criteria studied in the paper is the class of posterior power entropies which include the Shannon entropy as special case for the power α = 1 . It is shown that the most accurate estimate is in this...

Generalized regression estimation for continuous time processes with values in functional spaces

Bertrand Maillot, Christophe Chesneau (2021)

Commentationes Mathematicae Universitatis Carolinae

We consider two continuous time processes; the first one is valued in a semi-metric space, while the second one is real-valued. In some sense, we extend the results of F. Ferraty and P. Vieu in ``Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination'' (2004), by establishing the convergence, with rates, of the generalized regression function when a real-valued continuous time response is considered. As corollaries, we deduce the...

Goodman-Kruskal Measure of Association for Fuzzy-Categorized Variables

S. M. Taheri, Gholamreza Hesamian (2011)

Kybernetika

The Goodman-Kruskal measure, which is a well-known measure of dependence for contingency tables, is generalized to the case when the variables of interest are categorized by linguistic terms rather than crisp sets. In addition, to test the hypothesis of independence in such contingency tables, a novel method of decision making is developed based on a concept of fuzzy p -value. The applicability of the proposed approach is explained using a numerical example.

Currently displaying 1 – 11 of 11

Page 1