Page 1

Displaying 1 – 4 of 4

Showing per page

Neural network realizations of Bayes decision rules for exponentially distributed data

Igor Vajda, Belomír Lonek, Viktor Nikolov, Arnošt Veselý (1998)

Kybernetika

For general Bayes decision rules there are considered perceptron approximations based on sufficient statistics inputs. A particular attention is paid to Bayes discrimination and classification. In the case of exponentially distributed data with known model it is shown that a perceptron with one hidden layer is sufficient and the learning is restricted to synaptic weights of the output neuron. If only the dimension of the exponential model is known, then the number of hidden layers will increase...

Node assignment problem in Bayesian networks

Joanna Polanska, Damian Borys, Andrzej Polanski (2006)

International Journal of Applied Mathematics and Computer Science

This paper deals with the problem of searching for the best assignments of random variables to nodes in a Bayesian network (BN) with a given topology. Likelihood functions for the studied BNs are formulated, methods for their maximization are described and, finally, the results of a study concerning the reliability of revealing BNs' roles are reported. The results of BN node assignments can be applied to problems of the analysis of gene expression profiles.

Numerical methods for linear minimax estimation

Norbert Gaffke, Berthold Heiligers (2000)

Discussiones Mathematicae Probability and Statistics

We discuss two numerical approaches to linear minimax estimation in linear models under ellipsoidal parameter restrictions. The first attacks the problem directly, by minimizing the maximum risk among the estimators. The second method is based on the duality between minimax and Bayes estimation, and aims at finding a least favorable prior distribution.

Currently displaying 1 – 4 of 4

Page 1