Displaying 561 – 580 of 746

Showing per page

Shuffles of Min.

Piotr Mikusinski, Howard Sherwood, Michael D. Taylor (1992)

Stochastica

Copulas are functions which join the margins to produce a joint distribution function. A special class of copulas called shuffles of Min is shown to be dense in the collection of all copulas. Each shuffle of Min is interpreted probabilistically. Using the above-mentioned results, it is proved that the joint distribution of any two continuously distributed random variables X and Y can be approximated uniformly, arbitrarily closely by the joint distribution of another pair X* and Y* each of which...

Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Demétrio classes.

Célestin C. Kokonendji, Simplice Dossou-Gbété, Clarice G. B. Demétrio (2004)

SORT

In this paper we investigate two classes of exponential dispersion models (EDMs) for overdispersed count data with respect to the Poisson distribution. The first is a class of Poisson mixture with positive Tweedie mixing distributions. As an approximation (in terms of unit variance function) of the first, the second is a new class of EDMs characterized by their unit variance functions of the form μ + μp, where p is a real index related to a precise model. These two classes provide some alternatives...

Some properties and applications of probability distributions based on MacDonald function

Oldřich Kropáč (1982)

Aplikace matematiky

In the paper the basic analytical properties of the MacDonald function (the modified Bessel function of the second kind) are summarized and the properties of some subclasses of distribution functions based on MacDonald function, especially of the types x n K n ( x ) , x 0 , x n K n ( x x ) , x 𝐑 and x n + 1 K n ( x ) , x 0 are discussed. The distribution functions mentioned are useful for analytical modelling of composed (mixed) distributions, especially for products of random variables having distributions of the exponential type. Extensive and useful applications...

Some properties of beta functions and the distribution for the product of independent beta random variables.

Giorgio Pederzoli (1985)

Trabajos de Estadística e Investigación Operativa

Products of independent beta random variables appear in a large number of problems in multivariate statistical analysis. In this paper we show how a convenient factorial expansion of gamma ratios can be suitably used in deriving the exact density for a product of independent beta random variables. Possible applications of this result for obtaining the exact densities of the likelihood ratio criteria for testing hypotheses in the multinormal case are also pointed out. For the sake of illustration,...

Some Properties of Mittag-Leffler Functions and Matrix-Variate Analogues: A Statistical Perspective

Mathai, A. (2010)

Fractional Calculus and Applied Analysis

Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.Mittag-Leffler functions and their generalizations appear in a large variety of problems in different areas. When we move from total differential equations to fractional equations Mittag-Leffler functions come in naturally. Fractional reaction-diffusion problems in physical sciences and general input-output models in other disciplines are some of the examples in this direction. Some basic properties of Mittag-Leffler functions are...

Some results envolving the concepts of moment generating function and affinity between distribution functions. Extension for r k-dimensional normal distribution functions.

Antonio Dorival Campos (1999)

Qüestiió

We present a function ρ (F1, F2, t) which contains Matusita's affinity and expresses the affinity between moment generating functions. An interesting results is expressed through decomposition of this affinity ρ (F1, F2, t) when the functions considered are k-dimensional normal distributions. The same decomposition remains true for other families of distribution functions. Generalizations of these results are also presented.

Currently displaying 561 – 580 of 746