Bartlett Corrections for the Weibull Distribution.
The purpose of this paper is to study Bayesian like R- and M-estimators of change point(s). These estimators have smaller variance than the related argmax type estimators. Confidence intervals for the change point based on the exchangeability arguments are constructed. Finally, theoretical results are illustrated on the real data set.
We introduce the function , where and are the pdf and cdf of , respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables...
The present paper introduces a group of transformations on the collection of all bivariate copulas. This group contains an involution which is particularly useful since it provides (1) a criterion under which a given symmetric copula can be transformed into an asymmetric one and (2) a condition under which for a given copula the value of every measure of concordance is equal to zero. The group also contains a subgroup which is of particular interest since its four elements preserve symmetry, the...
The paper is concerned with the asymptotic distributions of estimators for the length and the centre of the so-called η-shorth interval in a nonparametric regression framework. It is shown that the estimator of the length converges at the n1/2-rate to a Gaussian law and that the estimator of the centre converges at the n1/3-rate to the location of the maximum of a Brownian motion with parabolic drift. Bootstrap procedures are proposed and shown to be consistent. They are compared with the plug-in...
The concept of -divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function on the interval . The choice of this parameter can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of -divergences are given and the class of -divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension...
This paper uses the Rice method [18] to give bounds to the distribution of the maximum of a smooth stationary Gaussian process. We give simpler expressions of the first two terms of the Rice series [3,13] for the distribution of the maximum. Our main contribution is a simpler form of the second factorial moment of the number of upcrossings which is in some sense a generalization of Steinberg et al.'s formula ([7] p. 212). Then, we present a numerical application and asymptotic expansions...