Page 1

Displaying 1 – 15 of 15

Showing per page

N-dimensional measures of dependence.

Edward F. Wolff (1980)

Stochastica

In recent joint papers with B. Schweizer, we used the notion of a copula to introduce a family of symmetric, nonparametric measures of dependence of two random variables. Here, we present n-dimensional extensions of these measures and of Spearman's ro. We study them vis-a-vis appropriate higher dimensional analogues of Rényi's axioms for measures of dependence, determine relations among them, and in some cases establish reduction formulae for their computation.

Near-exact distributions for the generalized Wilks Lambda statistic

Luís M. Grilo, Carlos A. Coelho (2010)

Discussiones Mathematicae Probability and Statistics

Two near-exact distributions for the generalized Wilks Lambda statistic, used to test the independence of several sets of variables with a multivariate normal distribution, are developed for the case where two or more of these sets have an odd number of variables. Using the concept of near-exact distribution and based on a factorization of the exact characteristic function we obtain two approximations, which are very close to the exact distribution but far more manageable. These near-exact distributions...

New results on the NBUFR and NBUE classes of life distributions

E. M. Shokry, A. N. Ahmed, E. A. Rakha, H. M. Hewedi (2009)

Applicationes Mathematicae

Some properties of the "new better than used in failure rate" (NBUFR) and the "new better than used in expectation" (NBUE) classes of life distributions are given. These properties include moment inequalities and moment generating functions behaviors. In addition, nonparametric estimation and testing of the survival functions of these classes are discussed.

Non-central generalized F distributions

Célia Nunes, João Tiago Mexia (2006)

Discussiones Mathematicae Probability and Statistics

The quotient of two linear combinations of independent chi-squares will have a generalized F distribution. Exact expressions for these distributions when the chi-square are central and those in the numerator or in the denominator have even degrees of freedom were given in Fonseca et al. (2002). These expressions are now extended for non-central chi-squares. The case of random non-centrality parameters is also considered.

Normalizing constants for a statistic based on logarithms of disjoint m-spacings

Franciszek Czekała (1996)

Applicationes Mathematicae

The paper is concerned with the asymptotic normality of a certain statistic based on the logarithms of disjoint m-spacings. The exact and asymptotic mean and variance are computed in the case of uniform distribution on the interval [0,1]. This result is generalized to the case when the sample is drawn from a distribution with positive step density on [0,1].

Nuevos modelos de distribuciones de extremos basados en aproximaciones en las ramas.

Enrique Castillo, Eladio Moreno, Jaime Puig-Pey (1983)

Trabajos de Estadística e Investigación Operativa

En este trabajo se presenta una metodología que permite clasificar funciones de distribución absolutamente continuas unidimensionales atendiendo a sus ramas. La idea básica es que, en las ramas la función de distribución difiere en un infinitésimo del valor uno o cero dependiendo de la rama de interés. La principal ventaja de esta clasificación es su aplicación a la teoría de distribuciones de extremos. En esta línea se obtienen nuevas familias de distribuciones de extremos. Entre ellas, las clásicas...

Currently displaying 1 – 15 of 15

Page 1