A Note on the Estimation of Mean in Normal Population.
In the paper, the problem of the existence of the maximum likelihood estimate and the REML estimate in the variance components model is considered. Errors in the proof of Theorem 3.1 in the article of Demidenko and Massam (Sankhyā 61, 1999), giving a necessary and sufficient condition for the existence of the maximum likelihood estimate in this model, are pointed out and corrected. A new proof of Theorem 3.4 in the Demidenko and Massam's article, concerning the existence of the REML estimate of...
In this paper an alternative approach to the one in Henze (1986) is proposed for deriving the odd moments of the skew-normal distribution considered in Azzalini (1985). The approach is based on a Pascal type triangle, which seems to greatly simplify moments computation. Moreover, it is shown that the likelihood equation for estimating the asymmetry parameter in such model is generated as orthogonal functions to the sample vector. As a consequence, conditions for a unique solution of the likelihood...
The maximum likelihood estimators of the parameters for the 3-parameter Weibull distribution do not always exist. Furthermore, computationally it is difficult to find all the solutions. Thus, the case of missing some solutions and among them the maximum likelihood estimators cannot be excluded. In this paper we provide a simple rule with help of which we are able to know if the system of the log-likelihood equations has even or odd number of solutions. It is a useful tool for the detection of all...
For a random rotation X = M0 eφ(ε) where M0 is a 3 x 3 rotation, ε is a trivariate random vector, and φ(ε) is a skew symmetric matrix, the least squares criterion consists of seeking a rotation M called the mean rotation minimizing tr[(M - E(X))t (M - E(X))]. Some conditions on the distribution of ε are set so that the least squares estimator is unbiased. Of interest is when ε is normally distributed N(0;Σ). Unbiasedness of the least squares estimator is dealt with according to eigenvalues of Σ.
We consider some results by D. Bernoulli and L. Euler on the method of maximum likelihood in parametric estimation. The statistical analysis is made by considering a parametric family with a shift parameter.