Page 1

Displaying 1 – 12 of 12

Showing per page

Bad luck in quadratic improvement of the linear estimator in a special linear model

Gejza Wimmer (1998)

Applications of Mathematics

The paper concludes our investigations in looking for the locally best linear-quadratic estimators of mean value parameters and of the covariance matrix elements in a special structure of the linear model (2 variables case) where the dispersions of the observed quantities depend on the mean value parameters. Unfortunately there exists no linear-quadratic improvement of the linear estimator of mean value parameters in this model.

Bayes unbiased estimators of parameters of linear trend with autoregressive errors

František Štulajter (1987)

Aplikace matematiky

The method of least wquares is usually used in a linear regression model 𝐘 = 𝐗 β + ϵ for estimating unknown parameters β . The case when ϵ is an autoregressive process of the first order and the matrix 𝐗 corresponds to a linear trend is studied and the Bayes approach is used for estimating the parameters β . Unbiased Bayes estimators are derived for the case of a small number of observations. These estimators are compared with the locally best unbiased ones and with the usual least squares estimators.

Bayesian estimation of AR(1) models with uniform innovations

Hocine Fellag, Karima Nouali (2005)

Discussiones Mathematicae Probability and Statistics

The first-order autoregressive model with uniform innovations is considered. In this paper, we propose a family of BAYES estimators based on a class of prior distributions. We obtain estimators of the parameter which perform better than the maximum likelihood estimator.

Bayesian joint modelling of the mean and covariance structures for normal longitudinal data.

Edilberto Cepeda-Cuervo, Vicente Nunez-Anton (2007)

SORT

We consider the joint modelling of the mean and covariance structures for the general antedependence model, estimating their parameters and the innovation variances in a longitudinal data context. We propose a new and computationally efficient classic estimation method based on the Fisher scoring algorithm to obtain the maximum likelihood estimates of the parameters. In addition, we also propose a new and innovative Bayesian methodology based on the Gibbs sampling, properly adapted for longitudinal...

Bayesian reference analysis for proportional hazards model of random censorship with Weibull distribution

Maria Ajmal, Muhammad Yameen Danish, Ayesha Tahira (2022)

Kybernetika

This article deals with the objective Bayesian analysis of random censorship model with informative censoring using Weibull distribution. The objective Bayesian analysis has a long history from Bayes and Laplace through Jeffreys and is reaching the level of sophistication gradually. The reference prior method of Bernardo is a nice attempt in this direction. The reference prior method is based on the Kullback-Leibler divergence between the prior and the corresponding posterior distribution and easy...

Currently displaying 1 – 12 of 12

Page 1