High-dimensional gaussian model selection on a gaussian design
We consider the problem of estimating the conditional mean of a real gaussian variable Y=∑i=1pθiXi+ɛ where the vector of the covariates (Xi)1≤i≤p follows a joint gaussian distribution. This issue often occurs when one aims at estimating the graph or the distribution of a gaussian graphical model. We introduce a general model selection procedure which is based on the minimization of a penalized least squares type criterion. It handles a variety of problems such as ordered and complete variable selection,...