The search session has expired. Please query the service again.
The problem of nonparametric estimation of the regression function f(x) = E(Y | X=x) using the orthonormal system of trigonometric functions or Legendre polynomials , k=0,1,2,..., is considered in the case where a sample of i.i.d. copies , i=1,...,n, of the random variable (X,Y) is available and the marginal distribution of X has density ϱ ∈ [a,b]. The constructed estimators are of the form , where the coefficients are determined by minimizing the empirical risk . Sufficient conditions for...
Local polynomials are used to construct estimators for the value of the regression function and the values of the derivatives in a general class of nonparametric regression models. The covariables are allowed to be random or non-random. Only asymptotic conditions on the average distribution of the covariables are used as smoothness of the experimental design. This smoothness condition is discussed in detail. The optimal stochastic rate of convergence of the estimators is established. The results...
This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales. In...
This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales....
A number of regularization methods for discrete inverse problems consist in considering weighted versions of the usual least square solution. These filter methods are generally restricted to monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. However, in several cases, non-monotonic sequences of filters may appear more appropriate. In this paper, we study a hard-thresholding regularization method that extends the spectral cut-off procedure to non-monotonic sequences....
Initially motivated by a practical issue in target detection via
laser vibrometry, we are interested in the problem of periodic
signal detection in a Gaussian fixed design regression framework.
Assuming that the signal belongs to some periodic Sobolev ball and
that the variance of the noise is known, we first consider the
problem from a minimax point of view: we evaluate the so-called
minimax separation rate which corresponds to the minimal
l2-distance between the signal and zero so that the detection...
The contribution deals with an application of the nonparametric version of Cox regression model to the analysis and modeling of the failure rate of technical devices. The objective is to recall the method of statistical analysis of such a model, to adapt it to the real–case study, and in such a way to demonstrate the flexibility of the Cox model. The goodness-of-fit of the model is tested, too, with the aid of the graphical test procedure based on generalized residuals.
We consider a finite mixture of Gaussian regression models for high-dimensional heterogeneous data where the number of covariates may be much larger than the sample size. We propose to estimate the unknown conditional mixture density by an ℓ1-penalized maximum likelihood estimator. We shall provide an ℓ1-oracle inequality satisfied by this Lasso estimator with the Kullback–Leibler loss. In particular, we give a condition on the regularization parameter of the Lasso to obtain such an oracle inequality....
We consider the asymptotic distribution of covariate values in the quantile regression basic solution under weak assumptions. A diagnostic procedure for assessing homogeneity of the conditional densities is also proposed.
Currently displaying 1 –
13 of
13