Page 1

Displaying 1 – 4 of 4

Showing per page

Efficient bootstrap simulation: an overview.

Alex Sánchez (1990)

Qüestiió

Two basic sources of error are associated to the use of bootstrap methods: one is derived from the fact that the true distribution is substituted by a suitable estimate, and the other is simulation errors. Some techniques to reduce or quantify these errors are discussed in this work. Some of them such as importance sampling or antithetic variates are adapted from classical Monte Carlo swindles, whereas others such as the centered and the balanced bootstrap, are more specific. The existence of common...

Estimación del número de clusters en una población aplicando el jackknife generalizado.

Juan José Prieto Martínez (1998)

Qüestiió

Sea una población constituida por un número desconocido de clusters. Este trabajo desarrolla una secuencia finita de estimadores no paramétricos para el número de clusters, basándose en el método jackknife generalizado. Estos estimadores resultan ser una combinación lineal de las frecuencias de observación de cada cluster. Se propone entonces un procedimiento de selección para elegir el más apropiado. La técnica es aplicada a un conjunto de datos reales procedentes de un estudio de captura de especies...

Exponential smoothing and resampling techniques in time series prediction

Maria Manuela Neves, Clara Cordeiro (2010)

Discussiones Mathematicae Probability and Statistics

Time series analysis deals with records that are collected over time. The objectives of time series analysis depend on the applications, but one of the main goals is to predict future values of the series. These values depend, usually in a stochastic manner, on the observations available at present. Such dependence has to be considered when predicting the future from its past, taking into account trend, seasonality and other features of the data. Some of the most successful forecasting methods are...

Currently displaying 1 – 4 of 4

Page 1