A contribution to bootstrapping autoregressive processes
We build confidence balls for the common density s of a real valued sample X1,...,Xn. We use resampling methods to estimate the projection of s onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all n ≥ 2 and the balls are adaptive over a collection of linear spaces.
We build confidence balls for the common density s of a real valued sample X1,...,Xn. We use resampling methods to estimate the projection of s onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all n ≥ 2 and the balls are adaptive over a collection of linear spaces.
An approximate necessary condition for the optimal bandwidth choice is derived. This condition is used to construct an iterative bandwidth selector. The algorithm is based on resampling and step-wise fitting the bandwidth to the density estimator from the previous iteration. Examples show fast convergence of the algorithm to the bandwidth value which is surprisingly close to the optimal one no matter what is the initial knowledge on the unknown density.
Aitkin y Clayton (1980) proponen el análisis de modelos de duración mediante modelos lineales generalizados. En este trabajo extendemos esta metodología permitiendo que el efecto de alguna de las variables explicativas pueda no ser especificado. Así, el modelo propuesto es un modelo lineal generalizado semiparamétrico, con una componente paramétrica donde se especifica la forma funcional concreta del efecto de las variables explicativas sobre la duración, y una componente no paramétrica donde recogemos...