Page 1

Displaying 1 – 4 of 4

Showing per page

Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?

M. Ivette Gomes, Lígia Henriques-Rodrigues (2010)

Discussiones Mathematicae Probability and Statistics

In this article, we begin with an asymptotic comparison at optimal levels of the so-called "maximum likelihood" (ML) extreme value index estimator, based on the excesses over a high random threshold, denoted PORT-ML, with PORT standing for peaks over random thresholds, with a similar ML estimator, denoted PORT-MP, with MP standing for modified-Pareto. The PORT-MP estimator is based on the same excesses, but with a trial of accommodation of bias on the Generalized Pareto model underlying those excesses....

Convergence of the tail probability for weighted sums of negatively orthant dependent random variables

Haiwu Huang, Linyan Li, Xuewen Lu (2020)

Kybernetika

In this research, strong convergence properties of the tail probability for weighted sums of negatively orthant dependent random variables are discussed. Some sharp theorems for weighted sums of arrays of rowwise negatively orthant dependent random variables are established. These results not only extend the corresponding ones of Cai [4], Wang et al. [19] and Shen [13], but also improve them, respectively.

Currently displaying 1 – 4 of 4

Page 1