Previous Page 8

Displaying 141 – 147 of 147

Showing per page

Transformations of copulas

Erich Peter Klement, Radko Mesiar, Endre Pap (2005)

Kybernetika

Transformations of copulas by means of increasing bijections on the unit interval and attractors of copulas are discussed. The invariance of copulas under such transformations as well as the relationship to maximum attractors and Archimax copulas is investigated.

Two operations of merging and splitting components in a chain graph

Milan Studený, Alberto Roverato, Šárka Štěpánová (2009)

Kybernetika

In this paper we study two operations of merging components in a chain graph, which appear to be elementary operations yielding an equivalent graph in the respective sense. At first, we recall basic results on the operation of feasible merging components, which is related to classic LWF (Lauritzen, Wermuth and Frydenberg) Markov equivalence of chain graphs. These results are used to get a graphical characterisation of factorisation equivalence of classic chain graphs. As another example of the use...

Univariate conditioning of copulas

Radko Mesiar, Vladimír Jágr, Monika Juráňová, Magda Komorníková (2008)

Kybernetika

The univariate conditioning of copulas is studied, yielding a construction method for copulas based on an a priori given copula. Based on the gluing method, g-ordinal sum of copulas is introduced and a representation of copulas by means of g-ordinal sums is given. Though different right conditionings commute, this is not the case of right and left conditioning, with a special exception of Archimedean copulas. Several interesting examples are given. Especially, any Ali-Mikhail-Haq copula with a given...

Weighted halfspace depth

Daniel Hlubinka, Lukáš Kotík, Ondřej Vencálek (2010)

Kybernetika

Generalised halfspace depth function is proposed. Basic properties of this depth function including the strong consistency are studied. We show, on several examples that our depth function may be considered to be more appropriate for nonsymetric distributions or for mixtures of distributions.

When is a Riesz distribution a complex measure?

Alan D. Sokal (2011)

Bulletin de la Société Mathématique de France

Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α . I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions

G. Letac, J. Wesołowski (2011)

Bulletin de la Société Mathématique de France

If the space 𝒬 of quadratic forms in n is splitted in a direct sum 𝒬 1 ... 𝒬 k and if X and Y are independent random variables of n , assume that there exist a real number a such that E ( X | X + Y ) = a ( X + Y ) and real distinct numbers b 1 , . . . , b k such that E ( q ( X ) | X + Y ) = b i q ( X + Y ) for any q in 𝒬 i . We prove that this happens only when k = 2 , when n can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure.

Wilks' factorization of the complex matrix variate Dirichlet distributions.

Xinping Cui, Arjun K. Gupta, Daya K. Nagar (2005)

Revista Matemática Complutense

In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with...

Currently displaying 141 – 147 of 147

Previous Page 8