Asymptotic distribution of rank statistics used for multivariate testing symmetry (Preliminary communication)
Let , be independent random -vectors with respective continuous cumulative distribution functions . Define the -vectors by setting equal to the rank of among . Let denote a multivariate score function in , and put , the being arbitrary regression constants. In this paper the asymptotic distribution of is investigated under various sets of conditions on the constants, the score functions, and the underlying distribution functions. In particular, asymptotic normality of is established...
We consider a multivariate regression (growth curve) model of the form , , , where and ’s are unknown scalar covariance components. In the case of replicated observations, we derive the explicit form of the locally best estimators of the covariance components under normality and asymptotic confidence ellipsoids for certain linear functions of the first order parameters estimating simultaneously the first and the second order parameters.
Asymptotic study of canonical correlation analysis gives the opportunity to present the different steps of an asymptotic study and to show the interest of an operator and tensor approach of multidimensional asymptotic statistics rather than the classical, matrix and analytic approach. Using the last approach, Anderson (1999) assumes the random vectors to have a normal distribution and the non zero canonical correlation coefficients to be distinct. The new approach we use, Fine (2000), is coordinate-free,...
By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant in the MGM model , , scalar , with a matrix . A known random matrix has the expected value , where the matrix is a known matrix of an experimental design, is an unknown matrix of parameters and is the covariance matrix of being the symbol of the Kronecker...
The paper concludes our investigations in looking for the locally best linear-quadratic estimators of mean value parameters and of the covariance matrix elements in a special structure of the linear model (2 variables case) where the dispersions of the observed quantities depend on the mean value parameters. Unfortunately there exists no linear-quadratic improvement of the linear estimator of mean value parameters in this model.
Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility...
In the paper necessary and sufficient conditions for the existence and an explicit expression for the Bayes invariant quadratic unbiased estimate of the linear function of the variance components are presented for the mixed linear model , , , with three unknown variance components in the normal case. An application to some examples from the analysis of variance is given.
The method of determining Bayesian estimators for the special ratios of variance components called the intraclass correlation coefficients is presented. The exact posterior distribution for these ratios of variance components is obtained. The approximate posterior mean of this distribution is also derived. All computations are non-iterative and avoid numerical integration.
This paper considers the problem of making statistical inferences about group judgements and group decisions using Qualitative Controlled Feedback, from the Bayesian point of view. The qualitative controlled feedback procedure was first introduced by Press (1978), for a single question of interest. The procedure in first reviewed here including the extension of the model to the multiple question case. We develop a model for responses of the panel on each stage. Many questions are treated simultaneously...
The present paper is related to the study of asymmetry for copulas by introducing functionals based on different norms for continuous variables. In particular, we discuss some facts concerning asymmetry and we point out some flaws occurring in the recent literature dealing with this matter.
The present paper introduces a group of transformations on the collection of all bivariate copulas. This group contains an involution which is particularly useful since it provides (1) a criterion under which a given symmetric copula can be transformed into an asymmetric one and (2) a condition under which for a given copula the value of every measure of concordance is equal to zero. The group also contains a subgroup which is of particular interest since its four elements preserve symmetry, the...