Estimation of Error Variance in One-Way Random Model.
The paper deals with the estimation of unknown vector parameter of mean and scalar parameters of variance as well in two-stage linear model, which is a special type of mixed linear model. The necessary and sufficient condition for the existence of uniformly best unbiased estimator of parameter of means is given. The explicite formulas for these estimators and for the estimators of the parameters of variance as well are derived.
Let be an -dimensional random vector which is distributed. A minimum variance unbiased estimator is given for provided is an unbiasedly estimable functional of an unknown -dimensional parameter .
The linear regression model, where the mean value parameters are divided into stable and nonstable part in each of both epochs of measurement, is considered in this paper. Then, equivalent formulas of the best linear unbiased estimators of this parameters in both epochs using partitioned matrix inverse are derived.
We consider a failure hazard function, conditional on a time-independent covariate Z, given by . The baseline hazard function and the relative risk both belong to parametric families with . The covariate Z has an unknown density and is measured with an error through an additive error model U = Z + ε where ε is a random variable, independent from Z, with known density . We observe a n-sample (Xi, Di, Ui), i = 1, ..., n, where Xi is the minimum between the failure time and the censoring time, and...
Numerical evaluation of the optimal nonlinear robust control requires estimating the impact of parameter uncertainties on the system output. The main goal of the paper is to propose a method for estimating the norm of an output trajectory deviation from the nominal trajectory for nonlinear uncertain, discrete-time systems. The measure of the deviation allows us to evaluate the robustness of any designed controller. The first part of the paper concerns uncertainty modelling for nonlinear systems...
The MINQUE of the linear function of the unknown variance-components parameter in mixed linear model under linear restrictions of the type is defined and derived. As an illustration of this estimator the example of the one-way classification model with the restrictions , where , is given.
An estimation of the linear function of elements of unknown matrices in the covariance components model is presented.
We consider the problem of estimating the mean of a Gaussian vector with independent components of common unknown variance . Our estimation procedure is based on estimator selection. More precisely, we start with an arbitrary and possibly infinite collection of estimators of based on and, with the same data , aim at selecting an estimator among with the smallest Euclidean risk. No assumptions on the estimators are made and their dependencies with respect to may be unknown. We establish...
Explicit expressions of UMVUE for variance components are obtained for a class of models that include balanced cross nested random models. These estimators are used to derive tests for the nullity of variance components. Besides the usual F tests, generalized F tests will be introduced. The separation between both types of tests will be based on a general theorem that holds even for mixed models. It is shown how to estimate the p-value of generalized F tests.
We introduce and study the behavior of estimators of changes in the mean value of a sequence of independent random variables in the case of so called epidemic alternatives which is one of the variants of the change point problem. The consistency and the limit distribution of the estimators developed for this situation are shown. Moreover, the classical estimators used for `at most change' are examined for the studied situation.