Displaying 221 – 240 of 657

Showing per page

Estimation of parameters of mean and variance in two-stage linear models

Júlia Volaufová (1987)

Aplikace matematiky

The paper deals with the estimation of unknown vector parameter of mean and scalar parameters of variance as well in two-stage linear model, which is a special type of mixed linear model. The necessary and sufficient condition for the existence of uniformly best unbiased estimator of parameter of means is given. The explicite formulas for these estimators and for the estimators of the parameters of variance as well are derived.

Estimation of polynomials in the regression model

Júlia Volaufová (1982)

Aplikace matematiky

Let 𝐘 be an n -dimensional random vector which is N n ( 𝐀 0 , 𝐊 ) distributed. A minimum variance unbiased estimator is given for f ( o ) provided f is an unbiasedly estimable functional of an unknown k -dimensional parameter 0 .

Estimation of the first order parameters in the twoepoch linear model

Karel Hron (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The linear regression model, where the mean value parameters are divided into stable and nonstable part in each of both epochs of measurement, is considered in this paper. Then, equivalent formulas of the best linear unbiased estimators of this parameters in both epochs using partitioned matrix inverse are derived.

Estimation of the hazard function in a semiparametric model with covariate measurement error

Marie-Laure Martin-Magniette, Marie-Luce Taupin (2009)

ESAIM: Probability and Statistics

We consider a failure hazard function, conditional on a time-independent covariate Z, given by η γ 0 ( t ) f β 0 ( Z ) . The baseline hazard function η γ 0 and the relative risk f β 0 both belong to parametric families with θ 0 = ( β 0 , γ 0 ) m + p . The covariate Z has an unknown density and is measured with an error through an additive error model U = Z + ε where ε is a random variable, independent from Z, with known density f ε . We observe a n-sample (Xi, Di, Ui), i = 1, ..., n, where Xi is the minimum between the failure time and the censoring time, and...

Estimation of the output deviation norm for uncertain, discrete-time nonlinear systems in a state dependent form

Przemysław Orłowski (2007)

International Journal of Applied Mathematics and Computer Science

Numerical evaluation of the optimal nonlinear robust control requires estimating the impact of parameter uncertainties on the system output. The main goal of the paper is to propose a method for estimating the norm of an output trajectory deviation from the nominal trajectory for nonlinear uncertain, discrete-time systems. The measure of the deviation allows us to evaluate the robustness of any designed controller. The first part of the paper concerns uncertainty modelling for nonlinear systems...

Estimation of variance components in mixed linear models

Júlia Volaufová, Viktor Witkovský (1992)

Applications of Mathematics

The MINQUE of the linear function ' ϑ of the unknown variance-components parameter ϑ in mixed linear model under linear restrictions of the type 𝐑 ϑ = c is defined and derived. As an illustration of this estimator the example of the one-way classification model with the restrictions ϑ 1 = k ϑ 2 , where k 0 , is given.

Estimator selection in the gaussian setting

Yannick Baraud, Christophe Giraud, Sylvie Huet (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider the problem of estimating the mean f of a Gaussian vector Y with independent components of common unknown variance σ 2 . Our estimation procedure is based on estimator selection. More precisely, we start with an arbitrary and possibly infinite collection 𝔽 of estimators of f based on Y and, with the same data Y , aim at selecting an estimator among 𝔽 with the smallest Euclidean risk. No assumptions on the estimators are made and their dependencies with respect to Y may be unknown. We establish...

Estimators and tests for variance components in cross nested orthogonal designs

Miguel Fonseca, João Tiago Mexia, Roman Zmyślony (2003)

Discussiones Mathematicae Probability and Statistics

Explicit expressions of UMVUE for variance components are obtained for a class of models that include balanced cross nested random models. These estimators are used to derive tests for the nullity of variance components. Besides the usual F tests, generalized F tests will be introduced. The separation between both types of tests will be based on a general theorem that holds even for mixed models. It is shown how to estimate the p-value of generalized F tests.

Estimators for epidemic alternatives

Marie Hušková (1995)

Commentationes Mathematicae Universitatis Carolinae

We introduce and study the behavior of estimators of changes in the mean value of a sequence of independent random variables in the case of so called epidemic alternatives which is one of the variants of the change point problem. The consistency and the limit distribution of the estimators developed for this situation are shown. Moreover, the classical estimators used for `at most change' are examined for the studied situation.

Currently displaying 221 – 240 of 657