Loading [MathJax]/extensions/MathZoom.js
Displaying 461 –
480 of
659
We find precise small deviation asymptotics with respect to the Hilbert norm for some special Gaussian processes connected to two regression schemes studied by MacNeill and his coauthors. In addition, we also obtain precise small deviation asymptotics for the detrended Brownian motion and detrended Slepian process.
The model of quadratic regression is studied by means of the projection pursuit method. This method leads to a decomposition of the matrix of quadratic regression, which can be used for an estimation of this matrix from the data observed.
The properly recorded standard deviation of the estimator and the properly recorded estimate are introduced. Bounds for the locally best linear unbiased estimator and estimate and also confidence regions for a linearly unbiasedly estimable linear functional of unknown parameters of the mean value are obtained in a special structure of nonlinear regression model. A sufficient condition for obtaining the properly recorded estimate in this model is also given.
We introduce and analyze a class of estimators for distribution parameters based on the relationship between the distribution function and the empirical distribution function. This class includes the nonlinear least squares estimator and the weighted nonlinear least squares estimator which has been used in parameter estimation for lifetime data (see e.g. [6, 8]) as well as the generalized nonlinear least squares estimator proposed in [3]. Sufficient conditions for consistency and asymptotic normality...
In the paper four types of estimations of the linear function of the variance components are presented for the mixed linear model with expectation and covariance matrix .
A method is introduced to select the significant or non null mean terms among a collection
of independent random variables. As an application we consider the problem of
recovering the
significant coefficients in non ordered model selection. The method is based on a convenient random centering of
the partial sums of the ordered observations. Based on
L-statistics methods we show consistency of the proposed
estimator.
An extension to unknown parametric distributions is considered.
Simulated
examples...
Currently displaying 461 –
480 of
659