Page 1

Displaying 1 – 11 of 11

Showing per page

Linear approximations to some non-linear AR(1) processes

Jiří Anděl (2000)

Kybernetika

Some methods for approximating non-linear AR(1) processes by classical linear AR(1) models are proposed. The quality of approximation is studied in special non-linear AR(1) models by means of comparisons of quality of extrapolation and interpolation in the original models and in their approximations. It is assumed that the white noise has either rectangular or exponential distribution.

Linear prediction of long-range dependent time series

Fanny Godet (2009)

ESAIM: Probability and Statistics

We present two approaches for linear prediction of long-memory time series. The first approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to the last k terms, which are the only available data in practice. We derive the asymptotic behaviour of the mean-squared error as k tends to +∞. The second predictor is the finite linear least-squares predictor i.e.  the projection of the forecast value on the last k observations. It is shown that these two predictors...

Log-periodogram regression in asymmetric long memory

Josu Arteche (2000)

Kybernetika

The long memory property of a time series has long been studied and several estimates of the memory or persistence parameter at zero frequency, where the spectral density function is symmetric, are now available. Perhaps the most popular is the log periodogram regression introduced by Geweke and Porter–Hudak [gewe]. In this paper we analyse the asymptotic properties of this estimate in the seasonal or cyclical long memory case allowing for asymmetric spectral poles or zeros. Consistency and asymptotic...

Long memory properties and covariance structure of the EGARCH model

Donatas Surgailis, Marie-Claude Viano (2002)

ESAIM: Probability and Statistics

The EGARCH model of Nelson [29] is one of the most successful ARCH models which may exhibit characteristic asymmetries of financial time series, as well as long memory. The paper studies the covariance structure and dependence properties of the EGARCH and some related stochastic volatility models. We show that the large time behavior of the covariance of powers of the (observed) ARCH process is determined by the behavior of the covariance of the (linear) log-volatility process; in particular, a...

Long memory properties and covariance structure of the EGARCH model

Donatas Surgailis, Marie-Claude Viano (2010)

ESAIM: Probability and Statistics

The EGARCH model of Nelson [29] is one of the most successful ARCH models which may exhibit characteristic asymmetries of financial time series, as well as long memory. The paper studies the covariance structure and dependence properties of the EGARCH and some related stochastic volatility models. We show that the large time behavior of the covariance of powers of the (observed) ARCH process is determined by the behavior of the covariance of the (linear) log-volatility process; in particular,...

Longitudinal K-sets analysis using lagged variables.

Catrien C. J. H. Bijleveld, Eeke Van der Burg (1993)

Qüestiió

We present an application of nonlinear Generalised Canonical Analysis (GCA) for analysing longitudinal data. The application uses lagged versions of variables to accomodate the time-dependence in the measurements. The usefulness of the proposed method is illustrated in an example from developmental psychology, in which we explore the relationship between mother and child dyadic interaction during the first six months after birth, demonstrating how child behaviour can elicit mother behaviour. We...

Currently displaying 1 – 11 of 11

Page 1