Displaying 161 – 180 of 253

Showing per page

On precision of stochastic optimization based on estimates from censored data

Petr Volf (2014)

Kybernetika

In the framework of a stochastic optimization problem, it is assumed that the stochastic characteristics of optimized system are estimated from randomly right-censored data. Such a case is frequently encountered in time-to-event or lifetime studies. The analysis of precision of such a solution is based on corresponding theoretical properties of estimated stochastic characteristics. The main concern is to show consistency of optimal solution even in the random censoring case. Behavior of solutions...

On preservation under univariate weighted distributions

Salman Izadkhah, Mohammad Amini, Gholam Reza Mohtashami Borzadaran (2015)

Applications of Mathematics

We derive some new results for preservation of various stochastic orders and aging classes under weighted distributions. The corresponding reversed preservation properties as straightforward conclusions of the obtained results for the direct preservation properties, are developed. Damage model of Rao, residual lifetime distribution, proportional hazards and proportional reversed hazards models are discussed as special weighted distributions to try some of our results.

On quantile optimization problem based on information from censored data

Petr Volf (2018)

Kybernetika

Stochastic optimization problem is, as a rule, formulated in terms of expected cost function. However, the criterion based on averaging does not take in account possible variability of involved random variables. That is why the criterion considered in the present contribution uses selected quantiles. Moreover, it is assumed that the stochastic characteristics of optimized system are estimated from the data, in a non-parametric setting, and that the data may be randomly right-censored. Therefore,...

On reliability analysis of consecutive k -out-of- n systems with arbitrarily dependent components

Ebrahim Salehi (2016)

Applications of Mathematics

In this paper, we consider the linear and circular consecutive k -out-of- n systems consisting of arbitrarily dependent components. Under the condition that at least n - r + 1 components ( r n ) of the system are working at time t , we study the reliability properties of the residual lifetime of such systems. Also, we present some stochastic ordering properties of residual lifetime of consecutive k -out-of- n systems. In the following, we investigate the inactivity time of the component with lifetime T r : n at the system...

On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas

Franco Pellerey (2008)

Kybernetika

Let 𝐗 = ( X , Y ) be a pair of exchangeable lifetimes whose dependence structure is described by an Archimedean survival copula, and let 𝐗 t = [ ( X - t , Y - t ) | X > t , Y > t ] denotes the corresponding pair of residual lifetimes after time t , with t 0 . This note deals with stochastic comparisons between 𝐗 and 𝐗 t : we provide sufficient conditions for their comparison in usual stochastic and lower orthant orders. Some of the results and examples presented here are quite unexpected, since they show that there is not a direct correspondence between univariate...

On useful schema in survival analysis after heart attack

Czesław Stępniak (2014)

Discussiones Mathematicae Probability and Statistics

Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

Optimal mean-variance bounds on order statistics from families determined by star ordering

Tomasz Rychlik (2002)

Applicationes Mathematicae

We present optimal upper bounds for expectations of order statistics from i.i.d. samples with a common distribution function belonging to the restricted family of probability measures that either precede or follow a given one in the star ordering. The bounds for families with monotone failure density and rate on the average are specified. The results are obtained by projecting functions onto convex cones of Hilbert spaces.

Currently displaying 161 – 180 of 253