A symbolic operator approach to power series transformation-expansion formulas.
In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of the structure....
In this work, we address the numerical solution of fluid-structure interaction problems. This issue is particularly difficulty to tackle when the fluid and the solid densities are of the same order, for instance as it happens in hemodynamic applications, since fully implicit coupling schemes are required to ensure stability of the resulting method. Thus, at each time step, we have to solve a highly non-linear coupled system, since the fluid domain depends on the unknown displacement of...
Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.
Zeta-generalized-Euler-constant functions, and defined on the closed interval [0, ∞), where γ(1) is the Euler-Mascheroni constant and (1) = ln , are studied and estimated with high accuracy.
In this paper we study the finite element approximations to the parabolic and hyperbolic integrodifferential equations and present an immediate analysis for global superconvergence for these problems, without using the Ritz projection or its modified forms.