Error analysis of QR algorithms for computing Lyapunov exponents.
The superconsistent collocation method, which is based on a collocation grid different from the one used to represent the solution, has proven to be very accurate in the resolution of various functional equations. Excellent results can be also obtained for what concerns preconditioning. Some analysis and numerous experiments, regarding the use of finite-differences preconditioners, for matrices arising from pseudospectral approximations of advection-diffusion boundary value problems, are presented...
We introduce a new way of the analysis of iterative aggregation-disaggregation methods for computing stationary probability distribution vectors of stochastic matrices. This new approach is based on the Fourier transform of the error propagation matrix. Exact formula for its spectrum can be obtained if the stochastic matrix is circulant. Some examples are presented.
We present algorithms for the determination of polynomials orthogonal with respect to a positive weight function multiplied by a polynomial with simple roots inside the interval of integration. We apply these algorithms to search for and calculate all possible sequences of imbedded quadratures of maximal polynomials order of precision for the generalized Laguerre and Hermite weight functions.