Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Some Computational Aspects of the Consistent Mass Finite Element Method for a (semi-)periodic Eigenvalue Problem

De Schepper, H. (1999)

Serdica Mathematical Journal

We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads...

Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting

Marta M. Betcke, Heinrich Voss (2007)

Applications of Mathematics

In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative...

Currently displaying 1 – 20 of 21

Page 1 Next