The search session has expired. Please query the service again.
The adaptive -step CG algorithm is a solver for sparse symmetric positive definite linear systems designed to reduce the synchronization cost per iteration while still achieving a user-specified accuracy requirement. In this work, we improve the adaptive -step conjugate gradient algorithm by the use of iteratively updated estimates of the largest and smallest Ritz values, which give approximations of the largest and smallest eigenvalues of , using a technique due to G. Meurant and P. Tichý (2018)....
We give a short introduction to a method for the data-sparse approximation of matrices resulting from the discretisation of non-local operators occurring in boundary integral methods or as the inverses of partial differential operators. The result of the approximation will be the so-called hierarchical matrices (or short -matrices). These matrices form a subset of the set of all matrices and have a data-sparse representation. The essential operations for these matrices (matrix-vector and matrix-matrix...
Many problems arising in different fields of science and engineering can be reduced, by applying some appropriate discretization, either to a system of linear algebraic equations or to a sequence of such systems. The solution of a system of linear algebraic equations is very often the most time-consuming part of the computational process during the treatment of the original problem, because these systems can be very large (containing up to many millions of equations). It is, therefore, important...
Currently displaying 21 –
27 of
27