A generalization of the steepest descent method for matrix functions.
The Alternating Nonnegative Least Squares (ANLS) method is commonly used for solving nonnegative tensor factorization problems. In this paper, we focus on algorithmic improvement of this method. We present a Proximal ANLS (PANLS) algorithm to enforce convergence. To speed up the PANLS method, we propose to combine it with a periodic enhanced line search strategy. The resulting algorithm, PANLS/PELS, converges to a critical point of the nonnegative tensor factorization problem under mild conditions....
We discuss some numerical ranges for Lipschitz continuous nonlinear operators and their relations to spectral sets. In particular, we show that the spectrum defined by Kachurovskij (1969) for Lipschitz continuous operators is contained in the so-called polynomial hull of the numerical range introduced by Rhodius (1984).