Obere Schranken für Eigenwerte von Eigenwertaufgaben der Form (...2 I Â?...A Â? B) x = 0 . - Upper Bounds for Eigenvalues of Quadratic Eigenvalue Problem.
The search session has expired. Please query the service again.
Page 1 Next
H. Linden (1976)
Numerische Mathematik
Jbilou, K., Sadok, H., Tinzefte, A. (2005)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Chen, Doron, Gilbert, John R., Toledo, Sivan (2005)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Stephan Ruscheweyh, Roland Freund (1986)
Numerische Mathematik
K. Veselic (1979)
Numerische Mathematik
Reinhard Nabben (1992)
Numerische Mathematik
Karl P. Hadeler (1974)
Acta Universitatis Carolinae. Mathematica et Physica
Milan Práger (2003)
Applications of Mathematics
Fast direct solvers for the Poisson equation with homogeneous Dirichlet and Neumann boundary conditions on special triangles and tetrahedra are constructed. The domain given is extended by symmetrization or skew symmetrization onto a rectangle or a rectangular parallelepiped and a fast direct solver is used there. All extendable domains are found. Eigenproblems are also considered.
Ian D. Morris, Nikita Sidorov (2013)
Journal of the European Mathematical Society
The joint spectral radius of a finite set of real matrices is defined to be the maximum possible exponential rate of growth of products of matrices drawn from that set. In previous work with K. G. Hare and J. Theys we showed that for a certain one-parameter family of pairs of matrices, this maximum possible rate of growth is attained along Sturmian sequences with a certain characteristic ratio which depends continuously upon the parameter. In this note we answer some open questions from that paper...
G.W. Stewart, G. Zhang (1991)
Numerische Mathematik
P. Oswald (1992)
Numerische Mathematik
Ali, Mouhamad Al Sayed, Sadkane, Miloud (2006)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Ivo Marek (1970)
Aplikace matematiky
Popa, Constantin (2003)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Erlangga, Yogi A., Nabben, Reinhard (2008)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
K. Veselic (1979)
Numerische Mathematik
Simoncini, Valeria (2010)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Gassav S. Abdoulaev, Yves Achdou, Yuri A. Kuznetsov, Christophe Prud'homme (1999)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Gassav S. Abdoulaev, Yves Achdou, Yuri A. Kuznetsov, Christophe Prud'homme (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
We discuss a parallel implementation of the domain decomposition method based on the macro-hybrid formulation of a second order elliptic equation and on an approximation by the mortar element method. The discretization leads to an algebraic saddle- point problem. An iterative method with a block- diagonal preconditioner is used for solving the saddle- point problem. A parallel implementation of the method is emphasized. Finally the results of numerical experiments are presented.
Günter Mayer (1986/1987)
Numerische Mathematik
Page 1 Next