Page 1 Next

Displaying 1 – 20 of 64

Showing per page

Efficiency of cropping system designs via base contrast

U. Bronowicka-Mielniczuk, J. Mielniczuk, T. Przybysz (2000)

Applicationes Mathematicae

The present article is a continuation of previous papers by the same authors devoted to the efficiency of crop rotation experiments. We focus on plans distinguished by the cyclical pattern of the incidence matrix. For practical reasons, we slightly modify the efficiency coefficient. The relation between the resulting efficiency coefficients is examined. In addition, we provide a background material on crop rotation experiments.

Efficient Computing of some Vector Operations over GF(3) and GF(4)

Bouyukliev, Iliya, Bakoev, Valentin (2008)

Serdica Journal of Computing

The problem of efficient computing of the affine vector operations (addition of two vectors and multiplication of a vector by a scalar over GF (q)), and also the weight of a given vector, is important for many problems in coding theory, cryptography, VLSI technology etc. In this paper we propose a new way of representing vectors over GF (3) and GF (4) and we describe an efficient performance of these affine operations. Computing weights of binary vectors is also discussed.

Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods

Ronald H.W. Hoppe, Barbara Wohlmuth (1995)

Applications of Mathematics

We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a...

Ein effizienter Algorithmus zur iterativen Einschliessung der inversen Matrix

Jürgen Herzberger (1987)

Aplikace matematiky

Es wird ein kombinierter Algorithmus zur iterativen Einschlissung der Inversen einer Matrix beschrieben. Es handelt sich dabei um eine intervallmässige Version des Schulz'schen Verfahrens. Es wird bewiesen, dass der Algorithmus genauso effizient ist wie ein hisher bekannter aus [2], dass er aber in Bezug auf den akkumulierten Rundungsfehler dem bisherigen Vorgehen vorzuziehen ist. Ein numerisches Beispiel wird gegeben.

Currently displaying 1 – 20 of 64

Page 1 Next