Displaying 161 – 180 of 644

Showing per page

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse, Dietmar Kröner (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized....

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations...

Currently displaying 161 – 180 of 644