-stability of Picard iteration in metric spaces.
In this study we are concerned with the problem of approximating a solution of a nonlinear equation in Banach space using Newton-like methods. Due to rounding errors the sequence of iterates generated on a computer differs from the sequence produced in theory. Using Lipschitz-type hypotheses on the mth Fréchet derivative (m ≥ 2 an integer) instead of the first one, we provide sufficient convergence conditions for the inexact Newton-like method that is actually generated on the computer. Moreover,...
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained.
We consider numerical approximation to the solution of non-autonomous evolution equations. The order of convergence of the simplest possible Magnus method is investigated.
We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.