-error estimate for a discrete two-sided obstacle problem and multilevel projective algorithm.
In this work, we present an introduction to automatic differentiation, its use in optimization software, and some new potential usages. We focus on the potential of this technique in optimization. We do not dive deeply in the intricacies of automatic differentiation, but put forward its key ideas. We sketch a survey, as of today, of automatic differentiation software, but warn the reader that the situation with respect to software evolves rapidly. In the last part of the paper, we present some...
A method for solving large convex optimization problems is presented. Such problems usually contain a big linear part and only a small or medium nonlinear part. The parts are tackled using two specialized (and thus efficient) external solvers: purely nonlinear and large-scale linear with a quadratic goal function. The decomposition uses an alteration of projection methods. The construction of the method is based on the zigzagging phenomenon and yields a non-asymptotic convergence, not dependent...
"Least regret control" consists in trying to find a control which "optimizes the situation" with the constraint of not making things too worse with respect to a known reference control, in presence of more or less significant perturbations. This notion was introduced in [7]. It is recalled on a simple example (an elliptic system, with distributed control and boundary perturbation) in Section 2. We show that the problem reduces to a standard optimal control problem for augmented state equations. On...
A linearly convergent iterative algorithm that approximates the rank-1 convex envelope of a given function , i.e. the largest function below which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.
A linearly convergent iterative algorithm that approximates the rank-1 convex envelope of a given function , i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.
This paper deals with variational inclusions of the form 0 ∈ φ(x) + F(x) where φ is a single-valued function admitting a second order Fréchet derivative and F is a set-valued map from to the closed subsets of . When a solution z̅ of the previous inclusion satisfies some semistability properties, we obtain local superquadratic or cubic convergent sequences.