Page 1 Next

Displaying 1 – 20 of 36

Showing per page

Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations

S. Cacace, A. Chambolle, A. DeSimone, L. Fedeli (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss a numerical formulation for the cell problem related to a homogenization approach for the study of wetting on micro rough surfaces. Regularity properties of the solution are described in details and it is shown that the problem is a convex one. Stability of the solution with respect to small changes of the cell bottom surface allows for an estimate of the numerical error, at least in two dimensions. Several benchmark experiments are presented and the reliability of the numerical solution...

Mathematical Modeling of Atmospheric Flow and Computation of Convex Envelopes

A. Caboussat (2011)

Mathematical Modelling of Natural Phenomena

Atmospheric flow equations govern the time evolution of chemical concentrations in the atmosphere. When considering gas and particle phases, the underlying partial differential equations involve advection and diffusion operators, coagulation effects, and evaporation and condensation phenomena between the aerosol particles and the gas phase. Operator splitting techniques are generally used in global air quality models. When considering organic aerosol...

Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities

Charalambos C. Baniotopoulos, Jaroslav Haslinger, Zuzana Morávková (2005)

Applications of Mathematics

The paper deals with approximations and the numerical realization of a class of hemivariational inequalities used for modeling of delamination and nonmonotone friction problems. Assumptions guaranteeing convergence of discrete models are verified and numerical results of several model examples computed by a nonsmooth variant of Newton method are presented.

Mathematical programming via the least-squares method

Evald Übi (2010)

Open Mathematics

The least-squares method is used to obtain a stable algorithm for a system of linear inequalities as well as linear and nonlinear programming. For these problems the solution with minimal norm for a system of linear inequalities is found by solving the non-negative least-squares (NNLS) problem. Approximate and exact solutions of these problems are discussed. Attention is mainly paid to finding the initial solution to an LP problem. For this purpose an NNLS problem is formulated, enabling finding...

Maximization of distances of regular polygons on a circle

Filip Guldan (1980)

Aplikace matematiky

This paper presents the solution of a basic problem defined by J. Černý which solves a concrete everyday problem in railway and road transport (the problem of optimization of time-tables by some criteria).

Mesh-independence and preconditioning for solving parabolic control problems with mixed control-state constraints

Michael Hintermüller, Ian Kopacka, Stefan Volkwein (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Optimal control problems for the heat equation with pointwise bilateral control-state constraints are considered. A locally superlinearly convergent numerical solution algorithm is proposed and its mesh independence is established. Further, for the efficient numerical solution reduced space and Schur complement based preconditioners are proposed which take into account the active and inactive set structure of the problem. The paper ends by numerical tests illustrating our theoretical findings and...

Mesh-independence and preconditioning for solving parabolic control problems with mixed control-state constraints

Michael Hintermüller, Ian Kopacka, Stefan Volkwein (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Optimal control problems for the heat equation with pointwise bilateral control-state constraints are considered. A locally superlinearly convergent numerical solution algorithm is proposed and its mesh independence is established. Further, for the efficient numerical solution reduced space and Schur complement based preconditioners are proposed which take into account the active and inactive set structure of the problem. The paper ends by numerical tests illustrating our theoretical findings and comparing...

Meta-optimization of bio-inspired algorithms for antenna array design

Virgilio Zúñiga-Grajeda, Alberto Coronado-Mendoza, Kelly Joel Gurubel-Tun (2018)

Kybernetika

In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily on the...

Métodos duales y algoritmos híbridos para problemas de "set partitioning".

Jaime Barceló Bugeda, Elena Fernández Areizaga (1990)

Trabajos de Investigación Operativa

En este artículo estudiamos la utilización de métodos duales en el diseño de algoritmos híbridos para la resolución de problemas de "Set Partitioning" (SP). Las técnicas duales resultan de gran interés para resolver problemas con estructura combinatoria no sólo porque generan cotas inferiores sino porque, además, su utilización junto con heurísticas y procedimientos de generación de desigualdades en el diseño de algoritmos híbridos permite evaluar la calidad de las cotas superiores obtenidas. Los...

Minimal invasion: An optimal L∞ state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

Minimal invasion: An optimal L∞ state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

Currently displaying 1 – 20 of 36

Page 1 Next