Page 1

Displaying 1 – 12 of 12

Showing per page

Finite-differences discretizations of the mumford-shah functional

Antonin Chambolle (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

About two years ago, Gobbino [21] gave a proof of a De Giorgi's conjecture on the approximation of the Mumford-Shah energy by means of finite-differences based non-local functionals. In this work, we introduce a discretized version of De Giorgi's approximation, that may be seen as a generalization of Blake and Zisserman's “weak membrane” energy (first introduced in the image segmentation framework). A simple adaptation of Gobbino's results allows us to compute the Γ-limit of this discrete functional...

Flow Polyhedra and Resource Constrained Project Scheduling Problems

Alain Quilliot, Hélène Toussaint (2012)

RAIRO - Operations Research - Recherche Opérationnelle

This paper aims at describing the way Flow machinery may be used in order to deal with Resource Constrained Project Scheduling Problems (RCPSP). In order to do it, it first introduces the Timed Flow Polyhedron related to a RCPSP instance. Next it states several structural results related to connectivity and to cut management. It keeps on with a description of the way this framework gives rise to a generic Insertion operator, which enables programmers to design greedy and local search algorithms....

From Eckart and Young approximation to Moreau envelopes and vice versa

Jean-Baptiste Hiriart-Urruty, Hai Yen Le (2013)

RAIRO - Operations Research - Recherche Opérationnelle

In matricial analysis, the theorem of Eckart and Young provides a best approximation of an arbitrary matrix by a matrix of rank at most r. In variational analysis or optimization, the Moreau envelopes are appropriate ways of approximating or regularizing the rank function. We prove here that we can go forwards and backwards between the two procedures, thereby showing that they carry essentially the same information.

Funciones penalidad y lagrangianos aumentados.

Eduardo Ramos Méndez (1981)

Trabajos de Estadística e Investigación Operativa

Por medio de un conjunto de propiedades se caracteriza una amplia familia de funciones que pueden emplearse como penalidad para la resolución numérica de un problema de programación matemática. A partir de ellas se construye un algoritmo de penalizaciones demostrando su convergencia a un punto factible óptimo. Se estudia la situación de los mínimos sin restricciones respecto de la región factible, la monotonía de la sucesión de valores de la función auxiliar y se dan varias cotas de convergencia....

Functional a posteriori error estimates for incremental models in elasto-plasticity

Sergey Repin, Jan Valdman (2009)

Open Mathematics

We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants...

Currently displaying 1 – 12 of 12

Page 1