Über die globale Konvergenz von Variable-Metrik-Verfahren mit nicht-exakter Schrittweitenbestimmung.
This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...
El trabajo presenta un nuevo algoritmo para la resolución de un problema de porgramación geométrica primal transformado. El método se basa en las técnicas de tipo lagrangiano aumentado y utiliza como penalidad funciones derivadas de la exponencial para las restricciones con un único término, y de la pérdida cuadrática para las restricciones con más de un término. El problema resultante se resuelve por medio de un método lagrangiano con iteración de tipo Newton, y los parámetros de penalización se...
A partir de las preferencias locales del decisor, emitido bajo la forma de ciertos niveles de satisfacción para los objetivos, construimos un algoritmo interactivo que genera puntos eficientes de equilibrio, en los que se minimiza la distancia del máximo ponderado entre la región factible y el punto ideal. Para este algoritmo hemos probado la convergencia.
This paper introduces a new approach for the joint alignment of a large collection of segmented images into the same system of coordinates while estimating at the same time an optimal common coordinate system. The atlas resulting from our group-wise alignment algorithm is obtained as the hidden variable of an Expectation-Maximization (EM) estimation. This is achieved by identifying the most consistent label across the collection of images at each voxel in the common frame of coordinates. In an...