Displaying 721 – 740 of 839

Showing per page

The extended adjoint method

Stanislas Larnier, Mohamed Masmoudi (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Searching for the optimal partitioning of a domain leads to the use of the adjoint method in topological asymptotic expansions to know the influence of a domain perturbation on a cost function. Our approach works by restricting to local subproblems containing the perturbation and outperforms the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted to different kinds of real problems and does not need...

The Lazy Travelling Salesman Problem in 2

Paz Polak, Gershon Wolansky (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We study a parameter (σ) dependent relaxation of the Travelling Salesman Problem on  2 . The relaxed problem is reduced to the Travelling Salesman Problem as σ 0. For increasing σ it is also an ordered clustering algorithm for a set of points in 2 . A dual formulation is introduced, which reduces the problem to a convex optimization, provided the minimizer is in the domain of convexity of the relaxed functional. It is shown that this last condition is generically satisfied, provided σ is large enough. ...

The Mortar finite element method for Bingham fluids

Patrick Hild (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

The mortar finite element method for Bingham fluids

Patrick Hild (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

The optimization of heat radiation intensity

Mlýnek, Jaroslav, Srb, Radek (2013)

Programs and Algorithms of Numerical Mathematics

This article focuses on the problem of calculating the intensity of heat radiation and its optimization across the surface of an aluminium or nickel mould. The inner mould surface is sprinkled with a special PVC powder and the outer mould surface is warmed by infrared heaters located above the mould. In this way artificial leathers are produced in the car industry (e.g., the artificial leather on a car dashboard). The article includes a description of how a mathematical model allows us to calculate the...

The problem of data assimilation for soil water movement

François-Xavier Le Dimet, Victor Petrovich Shutyaev, Jiafeng Wang, Mu Mu (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.

The problem of data assimilation for soil water movement

François-Xavier Le Dimet, Victor Petrovich Shutyaev, Jiafeng Wang, Mu Mu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.

The single (and multi) item profit maximizing capacitated lot–size (PCLSP) problem with fixed prices and no set–up

Kjetil K. Haugen, Asmund Olstad, Krystsina Bakhrankova, Erik Van Eikenhorst (2010)

Kybernetika

This paper proposes a specialized LP-algorithm for a sub problem arising in simple Profit maximising Lot-sizing. The setting involves a single (and multi) item production system with negligible set-up costs/times and limited production capacity. The producer faces a monopolistic market with given time-varying linear demand curves.

The smooth continuation method in optimal control with an application to quantum systems

Bernard Bonnard, Nataliya Shcherbakova, Dominique Sugny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system...

Currently displaying 721 – 740 of 839