The block-grid method for solving Laplace's equation on polygons with nonanalytic boundary conditions.
The phenomenon of thermal ablation is described by Pennes' bioheat equation. This model is based on Newton's law of cooling. Many approximate methods have been considered because of the importance of this issue. We propose an implicit numerical scheme which has better stability properties than other approaches.
It is well-known that the idea of transferring boundary conditions offers a universal and, in addition, elementary means how to investigate almost all methods for solving boundary value problems for ordinary differential equations. The aim of this paper is to show that the same approach works also for discrete problems, i.e., for difference equations. Moreover, it will be found out that some results of this kind may be obtained also for some particular two-dimensional problems.
The numerical solution of the elliptic Monge-Ampère Partial Differential Equation has been a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155–192; Oliker and Prussner, Numer. Math.54 (1988) 271–293; Oberman, Discrete Contin. Dyn. Syst. Ser. B10 (2008) 221–238; Dean and Glowinski, in Partial differential equations, Comput. Methods Appl. Sci. 16 (2008) 43–63; Glowinski et al., Japan...