The search session has expired. Please query the service again.
In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying...
This contribution presents a general numerical method for computing lower and
upper bound of the optimal constant in Friedrichs’ inequality. The standard Rayleigh-Ritz method is used for the lower bound and the method of is employed for the upper bound. Several numerical experiments show applicability and accuracy of this approach.
We derive a posteriori error estimates for singularly
perturbed reaction–diffusion problems which yield a guaranteed
upper bound on the discretization error and are fully and easily
computable. Moreover, they are also locally efficient and robust in
the sense that they represent local lower bounds for the actual
error, up to a generic constant independent in particular of the
reaction coefficient. We present our results in the framework of
the vertex-centered finite volume method but their nature...
Currently displaying 1 –
3 of
3