The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we propose implicit and semi-implicit in time finite volume schemes for the barotropic Euler equations (hence, as a particular case, for the shallow water equations) and for the full Euler equations, based on staggered discretizations. For structured meshes, we use the MAC finite volume scheme, and, for general mixed quadrangular/hexahedral and simplicial meshes, we use the discrete unknowns of the Rannacher−Turek or Crouzeix−Raviart finite elements. We first show that a solution...
Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the...
Cell-centered and vertex-centered finite volume schemes for the Laplace equation
with homogeneous Dirichlet boundary conditions
are considered on a triangular mesh and on the Voronoi diagram associated to its vertices.
A broken P1 function is constructed from the solutions of both schemes.
When the domain is two-dimensional polygonal convex,
it is shown that this reconstruction
converges with second-order accuracy towards the exact solution in the L2 norm,
under the sufficient condition that the...
Currently displaying 1 –
3 of
3