Displaying 281 – 300 of 441

Showing per page

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this bound is extended to the fine level by adding a proper...

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...

On the convergence of generalized polynomial chaos expansions

Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, Elisabeth Ullmann (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial chaos expansions to the correct limit and complement...

On the convergence of generalized polynomial chaos expansions

Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, Elisabeth Ullmann (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial...

On the convergence of the stochastic Galerkin method for random elliptic partial differential equations

Antje Mugler, Hans-Jörg Starkloff (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article we consider elliptic partial differential equations with random coefficients and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin methods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic constants or modeled as lognormal random field. In contrast, we make the significantly weaker assumption that the non-negative random coefficients can be bounded strictly away from zero and infinity by random...

On the finite element analysis of problems with nonlinear Newton boundary conditions in nonpolygonal domains

Miloslav Feistauer, Karel Najzar, Veronika Sobotíková (2001)

Applications of Mathematics

The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition considered in a two-dimensional nonpolygonal domain with a curved boundary. The existence and uniqueness of the solution of the continuous problem is a consequence of the monotone operator theory. The main attention is paid to the effect of the basic finite element variational crimes: approximation of the curved boundary by a polygonal one and the evaluation of integrals by numerical...

On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes

Vincent Heuveline, Friedhelm Schieweck (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider higher order mixed finite element methods for the incompressible Stokes or Navier-Stokes equations with Qr-elements for the velocity and discontinuous P r - 1 -elements for the pressure where the order r can vary from element to element between 2 and a fixed bound r * . We prove the inf-sup condition uniformly with respect to the meshwidth h on general quadrilateral and hexahedral meshes with hanging nodes.

Currently displaying 281 – 300 of 441