Page 1

Displaying 1 – 9 of 9

Showing per page

Recent developments in wavelet methods for the solution of PDE's

Silvia Bertoluzza (2005)

Bollettino dell'Unione Matematica Italiana

After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.

Replicant compression coding in Besov spaces

Gérard Kerkyacharian, Dominique Picard (2010)

ESAIM: Probability and Statistics

We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space B π , q s on a regular domain of d . The result is: if s - d(1/π - 1/p)+> 0, then the Kolmogorov metric entropy satisfies H(ε) ~ ε-d/s. This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper bound,...

Replicant compression coding in Besov spaces

Gérard Kerkyacharian, Dominique Picard (2003)

ESAIM: Probability and Statistics

We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space B π , q s on a regular domain of d . The result is: if s - d ( 1 / π - 1 / p ) + > 0 , then the Kolmogorov metric entropy satisfies H ( ϵ ) ϵ - d / s . This...

Robust operator estimates and the application to substructuring methods for first-order systems

Christian Wieners, Barbara Wohlmuth (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss a family of discontinuous Petrov–Galerkin (DPG) schemes for quite general partial differential operators. The starting point of our analysis is the DPG method introduced by [Demkowicz et al., SIAM J. Numer. Anal. 49 (2011) 1788–1809; Zitelli et al., J. Comput. Phys. 230 (2011) 2406–2432]. This discretization results in a sparse positive definite linear algebraic system which can be obtained from a saddle point problem by an element-wise Schur complement reduction applied to the test space....

Currently displaying 1 – 9 of 9

Page 1