Displaying 241 – 260 of 596

Showing per page

Error estimates for some quasi-interpolation operators

Rüdiger Verfürth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive explicit bounds on the constants in error estimates for two quasi-interpolation operators which are modifications of the “classical” Clément-operator. These estimates are crucial for making explicit the constants which appear in popular a posteriori error estimates. They are also compared with corresponding estimates for the standard nodal interpolation operator.

Error estimates for the Coupled Cluster method

Thorsten Rohwedder, Reinhold Schneider (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Coupled Cluster (CC) method is a widely used and highly successful high precision method for the solution of the stationary electronic Schrödinger equation, with its practical convergence properties being similar to that of a corresponding Galerkin (CI) scheme. This behaviour has for the discrete CC method been analyzed with respect to the discrete Galerkin solution (the “full-CI-limit”) in [Schneider, 2009]. Recently, we globalized the CC formulation to the full continuous space, giving a root...

Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints

Eduardo Casas (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states....

Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints

Eduardo Casas (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L∞ norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states. ...

Error estimates for the ultra weak variational formulation in linear elasticity

Teemu Luostari, Tomi Huttunen, Peter Monk (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier’s equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate in the L2(Ω) norm in terms of the best approximation...

Error estimates for the ultra weak variational formulation in linear elasticity∗

Teemu Luostari, Tomi Huttunen, Peter Monk (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier’s equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate...

Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation

Annalisa Buffa, Peter Monk (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The Ultra Weak Variational Formulation (UWVF) of the Helmholtz equation provides a variational framework suitable for discretization using plane wave solutions of an appropriate adjoint equation. Currently convergence of the method is only proved on the boundary of the domain. However substantial computational evidence exists showing that the method also converges throughout the domain of the Helmholtz equation. In this paper we exploit the fact that the UWVF is essentially an upwind discontinuous...

Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition

Marian Slodička (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain Ω dim with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part Γ n . The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for the linearization...

Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition

Marian Slodička (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain Ω N with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part Γn. The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for...

Error estimation and adaptivity for nonlinear FE analysis

Antonio Huerta, Antonio Rodríguez-Ferran, Pedro Díez (2002)

International Journal of Applied Mathematics and Computer Science

An adaptive strategy for nonlinear finite-element analysis, based on the combination of error estimation and h-remeshing, is presented. Its two main ingredients are a residual-type error estimator and an unstructured quadrilateral mesh generator. The error estimator is based on simple local computations over the elements and the so-called patches. In contrast to other residual estimators, no flux splitting is required. The adaptive strategy is illustrated by means of a complex nonlinear problem:...

Currently displaying 241 – 260 of 596