Page 1

Displaying 1 – 2 of 2

Showing per page

Newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations

Monnanda Erappa Shobha, Ioannis K. Argyros, Santhosh George (2014)

Applicationes Mathematicae

We use a combination of modified Newton method and Tikhonov regularization to obtain a stable approximate solution for nonlinear ill-posed Hammerstein-type operator equations KF(x) = y. It is assumed that the available data is y δ with | | y - y δ | | δ , K: Z → Y is a bounded linear operator and F: X → Z is a nonlinear operator where X,Y,Z are Hilbert spaces. Two cases of F are considered: where F ' ( x ) - 1 exists (F’(x₀) is the Fréchet derivative of F at an initial guess x₀) and where F is a monotone operator. The parameter...

Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems

Runchang Lin, Zhimin Zhang (2009)

Applications of Mathematics

Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method.

Currently displaying 1 – 2 of 2

Page 1