L2 Error Estimates for Finite Elements with Interpolated Boundary Conditions.
This paper investigates best rank-(r 1,..., r d) Tucker tensor approximation of higher-order tensors arising from the discretization of linear operators and functions in ℝd. Super-convergence of the best rank-(r 1,..., r d) Tucker-type decomposition with respect to the relative Frobenius norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical approximation is discussed. Tensor-product representation of basic multi-linear algebra operations is considered, including inner, outer...