Page 1

Displaying 1 – 3 of 3

Showing per page

Signal reconstruction from given phase of the Fourier transform using Fejér monotone methods

Dieter Schott (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The aim is to reconstruct a signal function x ∈ L₂ if the phase of the Fourier transform [x̂] and some additional a-priori information of convex type are known. The problem can be described as a convex feasibility problem. We solve this problem by different Fejér monotone iterative methods comparing the results and discussing the choice of relaxation parameters. Since the a-priori information is partly related to the spectral space the Fourier transform and its inverse have to be applied in each...

Solving singular convolution equations using the inverse fast Fourier transform

Eduard Krajník, Vincente Montesinos, Peter Zizler, Václav Zizler (2012)

Applications of Mathematics

The inverse Fast Fourier Transform is a common procedure to solve a convolution equation provided the transfer function has no zeros on the unit circle. In our paper we generalize this method to the case of a singular convolution equation and prove that if the transfer function is a trigonometric polynomial with simple zeros on the unit circle, then this method can be extended.

Currently displaying 1 – 3 of 3

Page 1