Solving linear systems with a Levinson-like solver.
A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.
A finite element code, called ZéBuLoN was parallelised some years ago. This code is entirely written using an object oriented framework (C++ is the support language). The aim of this paper is to present some problems which arose during the parallelization, and some innovative solutions. Especially, a new concept of message passing is presented which allows to take into account SMP machines while still using the parallel virtual machine abstraction.
A finite element code, called ZéBuLoN was parallelised some years ago. This code is entirely written using an object oriented framework (C++ is the support language). The aim of this paper is to present some problems which arose during the parallelization, and some innovative solutions. Especially, a new concept of message passing is presented which allows to take into account SMP machines while still using the parallel virtual machine abstraction.
In this article we discuss some issues related to Air Pollution modelling (as viewed by the authors): subgrid parametrization, multiphase modelling, reduction of high dimensional models and data assimilation. Numerical applications are given with POLAIR, a 3D numerical platform devoted to modelling of atmospheric trace species.
We present a new class of self-adaptive higher-order finite element methods (-FEM) which are free of analytical error estimates and thus work equally well for virtually all PDE problems ranging from simple linear elliptic equations to complex time-dependent nonlinear multiphysics coupled problems. The methods do not contain any tuning parameters and work reliably with both low- and high-order finite elements. The methodology was used to solve various types of problems including thermoelasticity,...
The parareal in time algorithm allows for efficient parallel numerical simulations of time-dependent problems. It is based on a decomposition of the time interval into subintervals, and on a predictor-corrector strategy, where the propagations over each subinterval for the corrector stage are concurrently performed on the different processors that are available. In this article, we are concerned with the long time integration of Hamiltonian systems. Geometric, structure-preserving integrators are...
This article focuses its attention on practical use of the box method for solving certain type of partial differential equations. The heat conduction problem of the oil transformer under stationary load is described by this equation. The knowledge of the transformer operating temperature is important for ensuring correct functionality and lifespan of transformer. We consider an elliptic partial differential equation of second order with the Newton boundary condition on a rectangular domain. The...
Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing for the maximum number of mesh intervals in each coordinate direction, our “combination” method simply adds or subtracts solutions that have been computed by the Galerkin FEM on , and meshes. It is shown that the combination FEM yields (up to a factor ) the same order of accuracy in the associated...
We study the use of a GPU for the numerical approximation of the curvature dependent flows of graphs - the mean-curvature flow and the Willmore flow. Both problems are often applied in image processing where fast solvers are required. We approximate these problems using the complementary finite volume method combined with the method of lines. We obtain a system of ordinary differential equations which we solve by the Runge-Kutta-Merson solver. It is a robust solver with an automatic choice of the...
Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations and can perform a much broader search than single-population ones. However, their formal analysis does not seem to have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by Vose, Rudolph and their collaborators....
This work is concerned with the numerical solution of inviscid compressible fluid flow in moving domains. Specifically, we assume that the boundary part of the domain (impermeable walls) are time dependent. We consider the Euler equations, which describe the movement of inviscid compressible fluids. We present two formulations of the Euler equations in the ALE (Arbitrary Lagrangian-Eulerian) form. These two formulations are discretized in space by the discontinuous Galerkin method. We apply a semi-implicit linearization...