The search session has expired. Please query the service again.
Displaying 121 –
140 of
230
Physical analysis of phase transformation of materials consisting from several (both substitutional and interstitial) components, coming from the Onsager extremal thermodynamic principle, leads, from the mathematical point of view, to a system of partial differential equations of evolution type, including certain integral term, with substantial differences in particular phases (, ) and in moving interface of finite thickness (),
in whose center the ideal liquid material behaviour can be detected....
This paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved....
A conceptual numerical strategy for rate-independent processes in the
energetic formulation is proposed and its convergence is proved under various
rather mild data qualifications. The novelty is that we obtain convergence of
subsequences of space-time discretizations even in case where the limit
problem does not have a unique solution and we need no
additional assumptions on higher regularity of the limit solution.
The variety of general perspectives thus
obtained is illustrated on several...
We consider functionals of a potential energy corresponding to . We are dealing with with . Various types of the subsoil of the plate are described by various types of the nonlinear term . The aim of the paper is to find a suitable computational algorithm.
In the article the following optimal control problem is studied: to determine a certain coefficient in a quasilinear partial differential equation of parabolic type so that the solution of a boundary value problem for this equation would minimise a given integral functional. In addition to the design and analysis of a numerical method the paper contains the solution of the fundamental problems connected with the formulation of the problem in question (existence and uniqueness of the solution of...
In this paper we propose a new numerical scheme to simulate the river flow in the presence of a variable bottom surface. We use the finite volume method, our approach is based on the technique described by D. L. George for shallow water equations. The main goal is to construct the scheme, which is well balanced, i.e. maintains not only some special steady states but all steady states which can occur. Furthermore this should preserve nonnegativity of some quantities, which are essentially nonnegative...
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.In the present paper we solve space-time fractional diffusion-wave equation with two space variables, using the matrix method. Here, in particular, we give solutions to classical diffusion and wave equations and fractional diffusion and wave equations with different combinations of time and space fractional derivatives. We also plot some graphs for these problems with the help of MATLAB routines.
A special two-sided condition for the incremental magnetic reluctivity is introduced which guarantees the unique existence of both the weak and the approximate solutions of the nonlinear stationary magnetic field distributed on a region composed of different media, as well as a certain estimate of the error between the two solutions. The condition, being discussed from the physical as well as the mathematical point of view, can be easily verified and is fulfilled for various magnetic reluctivity...
Currently displaying 121 –
140 of
230