Page 1

Displaying 1 – 17 of 17

Showing per page

On a certain two-sided symmetric condition in magnetic field analysis and computations

František Melkes, Alexander Ženíšek (1997)

Applications of Mathematics

A special two-sided condition for the incremental magnetic reluctivity is introduced which guarantees the unique existence of both the weak and the approximate solutions of the nonlinear stationary magnetic field distributed on a region composed of different media, as well as a certain estimate of the error between the two solutions. The condition, being discussed from the physical as well as the mathematical point of view, can be easily verified and is fulfilled for various magnetic reluctivity...

On Numerical Solution of the Gardner–Ostrovsky Equation

M. A. Obregon, Y. A. Stepanyants (2012)

Mathematical Modelling of Natural Phenomena

A simple explicit numerical scheme is proposed for the solution of the Gardner–Ostrovsky equation (ut + cux + α uux + α1u2ux + βuxxx)x = γu which is also known as the extended rotation-modified Korteweg–de Vries (KdV) equation. This equation is used for the description of internal oceanic waves affected by Earth’ rotation. Particular versions of this equation with zero some of coefficients, α, α1, β, or γ are also known in numerous applications....

On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem

Paola Pietra, Claudio Verdi (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.

On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation

Michal Křížek, Pekka Neittaanmäki (1989)

Aplikace matematiky

The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.

Currently displaying 1 – 17 of 17

Page 1