Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells I
The authors examine a finite element method for the numerical approximation of the solution to a div-rot system with mixed boundary conditions in bounded plane domains with piecewise smooth boundary. The solvability of the system both in an infinite and finite dimensional formulation is proved. Piecewise linear element fields with pointwise boundary conditions are used and their approximation properties are studied. Numerical examples indicating the accuracy of the method are given.
We analyze semidiscrete and second-order in time fully discrete finite element methods for the Kuramoto-Sivashinsky equation.
This work is focused on a weak solution of a coupled physical task of the microwave wood drying process with stress-strain effects and moisture/temperature dependency. Due to the well known weak solutions for the individual physical fields, the author concerns with the coupled stress-strain relation coupled with the moisture and temperature distributions. For the scale dependency the subgrid upscaling method was used. The solved region is assumed to be divided into discontinuous subregions according...
We deal with modelling of flows in channels or tubes with abrupt changes of the diameter. The goal of this work is to construct the FEM solution in the vicinity of these corners as precise as desired. We present two ways. The first approach makes use of a posteriori error estimates and the adaptive strategy. The second approach is based on the asymptotic behaviour of the exact solution in the vicinity of the corner and on the a priori error estimate of the FEM solution. Then we obtain the solution...