Displaying 701 – 720 of 925

Showing per page

An Improved Algorithm for a Bicriteria Batching Scheduling Problem

Cheng He, Xiumei Wang, Yixun Lin, Yundong Mu (2013)

RAIRO - Operations Research - Recherche Opérationnelle

This note is concerned with the bicriteria scheduling problem on a series-batching machine to minimize maximum cost and makespan. An O(n5) algorithm has been established previously. Here is an improved algorithm which solves the problem in O(n3) time.

An improved ant algorithm for Multi-mode Resource Constrained Project Scheduling Problem

Peng Wuliang, Huang Min, Hao Yongping (2014)

RAIRO - Operations Research - Recherche Opérationnelle

Many real-world scheduling problems can be modeled as Multi-mode Resource Constrained Project Scheduling Problems (MRCPSP). However, the MRCPSP is a strong NP-hard problem and very difficult to be solved. The purpose of this research is to investigate a more efficient alternative based on ant algorithm to solve MRCPSP. To enhance the generality along with efficiency of the algorithm, the rule pool is designed to manage numerous priority rules for MRCPSP. Each ant is provided with an independent...

An improved derandomized approximation algorithm for the max-controlled set problem

Carlos Martinhon, Fábio Protti (2011)

RAIRO - Theoretical Informatics and Applications

A vertex i of a graph G = (V,E) is said to be controlled by M V if the majority of the elements of the neighborhood of i (including itself) belong to M. The set M is a monopoly in G if every vertex i V is controlled by M. Given a set M V and two graphs G1 = ( V , E 1 ) and G2 = ( V , E 2 ) where E 1 E 2 , the monopoly verification problem (mvp) consists of deciding whether there exists a sandwich graph G = (V,E) (i.e., a graph where E 1 E E 2 ) such that M is a monopoly in G = (V,E). If the answer to the mvp is No, we then consider...

An improved derandomized approximation algorithm for the max-controlled set problem

Carlos Martinhon, Fábio Protti (2011)

RAIRO - Theoretical Informatics and Applications

A vertex i of a graph G = (V,E) is said to be controlled by M V if the majority of the elements of the neighborhood of i (including itself) belong to M. The set M is a monopoly in G if every vertex i V is controlled by M. Given a set M V and two graphs G1 = ( V , E 1 ) and G2 = ( V , E 2 ) where E 1 E 2 , the monopoly verification problem (mvp) consists of deciding whether there exists a sandwich graph G = (V,E) (i.e., a graph where E 1 E E 2 ) such that M is a monopoly in G = (V,E). If the answer to the mvp is No, we then consider...

An inquiry-based method for Choquet integral-based aggregation of interface usability parameters

Miguel-Ángel Sicilia, Elena García Barriocanal, Tomasa Calvo (2003)

Kybernetika

The concept of usability of man-machine interfaces is usually judged in terms of a number of aspects or attributes that are known to be subject to some rough correlations, and that are in many cases given different importance, depending on the context of use of the application. In consequence, the automation of judgment processes regarding the overall usability of concrete interfaces requires the design of aggregation operators that are capable of modeling approximate or ill-defined interactions...

An intrinsically non minimal-time Minsky-like 6-states solution to the Firing Squad synchronization problem

Jean-Baptiste Yunès (2008)

RAIRO - Theoretical Informatics and Applications

Here is presented a 6-states non minimal-time solution which is intrinsically Minsky-like and solves the three following problems: unrestricted version on a line, with one initiator at each end of a line and the problem on a ring. We also give a complete proof of correctness of our solution, which was never done in a publication for Minsky's solutions.

An introduction to probabilistic methods with applications

Pierre Del Moral, Nicolas G. Hadjiconstantinou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This special volume of the ESAIM Journal, Mathematical Modelling and Numerical Analysis, contains a collection of articles on probabilistic interpretations of some classes of nonlinear integro-differential equations. The selected contributions deal with a wide range of topics in applied probability theory and stochastic analysis, with applications in a variety of scientific disciplines, including physics, biology, fluid mechanics, molecular chemistry, financial mathematics and bayesian statistics....

An introduction to quantum annealing

Diego de Falco, Dario Tamascelli (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing....

An introduction to quantum annealing

Diego de Falco, Dario Tamascelli (2011)

RAIRO - Theoretical Informatics and Applications

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing....

An object-oriented approach to simulating human gait motion based on motion tracking

Martin Tändl, Tobias Stark, Nihat Ercümet Erol, Franz Löer, Andrés Kecskeméthy (2009)

International Journal of Applied Mathematics and Computer Science

Accurate bone motion reconstruction from marker tracking is still an open and challenging issue in biomechanics. Presented in this paper is a novel approach to gait motion reconstruction based on kinematical loops and functional skeleton features extracted from segmented Magnetic Resonance Imaging (MRI) data. The method uses an alternative path for concatenating relative motion starting at the feet and closing at the hip joints. From the evaluation of discrepancies between predicted and geometrically...

Currently displaying 701 – 720 of 925