On the Symbolic Evaluation of Determinants
A partitioning algorithm for the Euclidean matching problem in is introduced and analyzed in a probabilistic model. The algorithm uses elements from the fixed dissection algorithm of Karp and Steele (1985) and the Zig-Zag algorithm of Halton and Terada (1982) for the traveling salesman problem. The algorithm runs in expected time and approximates the optimal matching in the probabilistic sense.
We study deterministic one-way communication complexity of functions with Hankel communication matrices. Some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction needs maximum complexity. Moreover, in order to obtain an optimal protocol, it is in any case sufficient...
We study deterministic one-way communication complexity of functions with Hankel communication matrices. Some structural properties of such matrices are established and applied to the one-way two-party communication complexity of symmetric Boolean functions. It is shown that the number of required communication bits does not depend on the communication direction, provided that neither direction needs maximum complexity. Moreover, in order to obtain an optimal protocol, it is in any case sufficient...
In on-line computation, the instance of the problem dealt is not entirely known from the beginning of the solution process, but it is revealed step-by-step. In this paper we deal with on-line independent set. On-line models studied until now for this problem suppose that the input graph is initially empty and revealed either vertex-by-vertex, or cluster-by-cluster. Here we present a new on-line model quite different to the ones already studied. It assumes that a superset of the final graph is initially...
An edge ranking of a graph is a labeling of edges using positive integers such that all paths connecting two edges with the same label visit an intermediate edge with a higher label. An edge ranking of a graph is optimal if the number of labels used is minimum among all edge rankings. As the problem of finding optimal edge rankings for general graphs is NP-hard [12], it is interesting to concentrate on special classes of graphs and find optimal edge rankings for them efficiently. Apart from trees...
Dans cet article, nous essayons de faire le point sur les résultats concernant les aspects combinatoires et algorithmiques des ordres médians et des ordres de Slater des tournois. La plupart des résultats recensés sont tirés de différentes publications ; plusieurs sont originaux.
The MATRIX PACKING DOWN problem asks to find a row permutation of a given (0,1)-matrix in such a way that the total sum of the first non-zero column indexes is maximized. We study the computational complexity of this problem. We prove that the MATRIX PACKING DOWN problem is NP-complete even when restricted to zero trace symmetric (0,1)-matrices or to (0,1)-matrices with at most two 1's per column. Also, as intermediate results, we introduce several new simple graph layout problems which...
To overcome the shortage of cadaveric kidneys available for transplantation, several countries organize systematic kidney exchange programs. The kidney exchange problem can be modelled as a cooperative game between incompatible patient-donor pairs whose solutions are permutations of players representing cyclic donations. We show that the problems to decide whether a given permutation is not (weakly) Pareto optimal are NP-complete.
We study the problem of finding an alternating path having given endpoints and passing through a given set of vertices in edge-colored graphs (a path is alternating if any two consecutive edges are in different colors). In particular, we show that this problem in NP-complete for 2-edge-colored graphs. Then we give a polynomial characterization when we restrict ourselves to 2-edge-colored complete graphs. We also investigate on (s,t)-paths through fixed vertices, i.e. paths of length s+t such that...