Une condition impliquant toutes les identités rationnelles
Nous généralisons le théorème de Cobham ([2]), en démontrant qu'une partie infinie de ℕ est reconnaissable en base k (k entier strictement plus grand que un) et reconnaissable dans un système de numération associé à un nombre de Pisot unitaire (ayant une propriété arithmétique supplémentaire) si et seulement si elle est ultimement périodique.
Duplication is the replacement of a factor w within a word by ww. This operation can be used iteratively to generate languages starting from words or sets of words. By undoing duplications, one can eventually reach a square-free word, the original word's duplication root. The duplication root is unique, if the length of duplications is fixed. Based on these unique roots we define the concept of duplication code. Elementary properties are stated, then the conditions under which infinite duplication...
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.