On languages satisfying “interchange Lemma”
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers and respectively, such that and are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
The arithmetical complexity of infinite words, defined by Avgustinovich, Fon-Der-Flaass and the author in 2000, is the number of words of length n which occur in the arithmetical subsequences of the infinite word. This is one of the modifications of the classical function of subword complexity, which is equal to the number of factors of the infinite word of length n. In this paper, we show that the orders of growth of the arithmetical complexity can behave as many sub-polynomial functions. More...